
假设这是个两个玩家的游戏。
玩家a有2种纯策略a和b,不能相互支配。
玩家b有2种纯策略c和d,不能相互支配。
设a选a的几率是p,则选b的几率为1-p;设b选c的几率是q,则选d的几率为1-q
当a取某一个p=p0,b获得的总效用不为自己q的取值而改变;b取某一个q=q0,a获得的总效用不为自己p的取值而改变,此时我们说(p0,1-p0)和(q0,1-q0)是一对混合策略下的纳什均衡。

假设这是个两个玩家的游戏。
玩家a有2种纯策略a和b,不能相互支配。
玩家b有2种纯策略c和d,不能相互支配。
设a选a的几率是p,则选b的几率为1-p;设b选c的几率是q,则选d的几率为1-q
当a取某一个p=p0,b获得的总效用不为自己q的取值而改变;b取某一个q=q0,a获得的总效用不为自己p的取值而改变,此时我们说(p0,1-p0)和(q0,1-q0)是一对混合策略下的纳什均衡。